MR Enterography in Crohn’s Disease

Bachir Taouli, MD, FISMRM, FSAR, FESGAR
Director of Body MRI and Cancer Imaging
Dpt. of Radiology, Translational and Molecular Imaging Institute
Icahn School of Medicine at Mount Sinai, New York
Financial Disclosure

Grant support: Bayer
Burrill Crohn (1884 –1983)

- Trained in pathology and gastroenterology at Mount Sinai
- Named Chief of Mount Sinai’s Gastroenterology Clinic in 1923
- Associated with Mount Sinai for over 60y
- One of the first to describe CD as “Regional ileitis; a pathologic and clinical entity”. JAMA 1932 (14 cases of granulomatous inflammation of the distal ileum)
Crohn’s disease (CD)

- Chronic IBD with variable clinical features and disease course
- Can involve any location of the GI tract, frequently affects distal SB
- All bowel layers may be involved, with skip areas
- Fatigue, persistent diarrhea, cramping abdominal pain, fever, rectal bleeding, loss of appetite, weight loss
- Extra-digestive symptoms: joints, eyes, skin, PSC
- Complications: SBO, GI ulcers, perianal fistulas, protein loss, vitamin insufficiency, superinfection
- Increased risk of SB, colorectal cancer, lymphoma and carcinoid tumors
Crohn’s disease (CD)

- Disease behavior based on the presence/absence of complications such as stricture, fistula, and abscesses
- Biologic therapy: immune modifiers (azathioprine, 6-MP, methotrexate), antibiotics, anti-TNF (infliximab)
- 2/3 to 3/4 of CD patients require surgery at some point
- Ultimate goal of medical therapy in CD:
 - Achieve clinical response and sustained remission
 - Prevent strictures and penetrating complications that lead to surgery
Advantages of MRI over CT

• Radiation free
• Higher tissue contrast
• Comprehensive examination: Bowel and perianal fistulas
• Functional assessment:
 ✓ Peristalsis
 ✓ Diffusion
 ✓ Enhancement/perfusion
CT related radiation

<table>
<thead>
<tr>
<th>Diagnostic Procedure</th>
<th>Effective Dose (mSv)</th>
<th>Time Period for Equivalent Effective Dose from Natural Background Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest x ray (PA)</td>
<td>0.02</td>
<td>2.4 days</td>
</tr>
<tr>
<td>CT abdomen</td>
<td>8 (3.5-25)</td>
<td>2.7 years</td>
</tr>
<tr>
<td>CT pelvis</td>
<td>8 (3.3-10)</td>
<td>2.7 years</td>
</tr>
</tbody>
</table>

Note: yearly limit for radiation workers in the US 50 mSv
http://www.fda.gov/Radiation-EmittingProducts/
27 year old female with Crohn colitis

Effective CT dose = 11.4 mSv
Roles of MRI

• Diagnose CD
• Assess extent of lesions
• Assess for complications (abscess/phlegmons, fistulas, obstruction, stenotic lesions)
• Assess response to treatment
• Marker of severity (MaRIA and Clermont scores)
 – MaRIA = 1.5 × wall thickening (T1, mm) + 0.02 × RCE + 5 × edema + 10 × ulceration
 – Clermont = 1.646 × wall thickening + 1.321 × ADC + 5.613 × edema + 8.306 × ulceration + 5.039

Limitations of MRI

- Longer exam
- Not as sensitive to air
- Limited availability
- Quality can be suboptimal (poor breath-holding, limited bowel distention)
Patient preparation

- 6 hours of fasting
- Check contra-indications to MRI
- Glucagon (1 mg IM)
MR Enterography protocol (≤ 45 min)

• 1.5T or 3T multichannel systems
• Axial and coronal single shot T2 HASTE
• Axial T1 in- and out-of-phase
• DWI (detection of abscesses, fistulas, inflammation)
• Axial and coronal dynamic 3D GRE T1 pre- and post-contrast: 25, 60, 180 sec

Optional:
  Peristalsis (Tfisp/Fiesta)
Oral contrast agents

- Need neutral biphasic non-absorbable agents with minimal water absorption by the bowel
- VoLumen (Bracco Diagnostics): berry flavored low concentrated barium sulfate suspension (0.1% weight/volume) contains sorbitol and a gum
- Breeza (Beekley medical): lemon and lime flavored contains sorbitol, mannitol, and xantham gum without barium sulfate
- Performs similarly to VoLumen, with better taste, and greater willingness for repeat drinking (Kolbe. AJR 2016; Dillman, Radiology 2018)
- Mannitol, PEG, sorbitol and lactulose, methylcellulose, metamucil
- Ingestion of up to 1000 ml 45-60 min prior to scanning
Imaging findings associated with SB CD inflammation

<table>
<thead>
<tr>
<th>Segmental mural hyperenhancement</th>
<th>Intramural edema</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Asymmetric</td>
<td>Stricture</td>
</tr>
<tr>
<td>• Stratified (bi-or tri-laminar)</td>
<td>• Possible stricture without upstream dilation (< 3 cm)</td>
</tr>
<tr>
<td>• Homogeneous, symmetric</td>
<td>• Stricture with mild upstream dilation (3 - 4 cm)</td>
</tr>
<tr>
<td>Wall thickening</td>
<td>• Stricture with moderate/severe upstream dilation (>4 cm)</td>
</tr>
<tr>
<td>• Normal</td>
<td>Ulcerations</td>
</tr>
<tr>
<td>• Mild (3-5 mm)</td>
<td>Sacculations</td>
</tr>
<tr>
<td>• Moderate (>5 - 9 mm)</td>
<td>Restricted Diffusion</td>
</tr>
<tr>
<td>• Severe (≥10 mm)</td>
<td>Diminished Motility</td>
</tr>
<tr>
<td>Imaging Findings of Penetrating CD</td>
<td>CD changes in the mesentery</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Fistulas</td>
<td>Perienteric edema/inflammation</td>
</tr>
<tr>
<td>• Sinus tract</td>
<td>Engorged vasa recta</td>
</tr>
<tr>
<td>• Simple fistula</td>
<td>Fibrofatty proliferation</td>
</tr>
<tr>
<td>• Complex fistulas</td>
<td>Mesenteric venous thrombus/occlusion</td>
</tr>
<tr>
<td>• Inflammatory mass</td>
<td>Adenopathy</td>
</tr>
<tr>
<td>• Abscess</td>
<td></td>
</tr>
</tbody>
</table>
Active CD

Enhancing TI

Comb sign

Nodes
Active CD in TI and perianal fistula
CD with complex internal fistulas
CD, TI Involvement and small abscess
Abscesses in CD
CD-Enterocutaneous fistula
CD-Fistula between sigmoid colon and bladder
14 year old female with CD and large complex abscess
CD-Stenotic lesion
CD-Stenotic lesion
CD with complex internal fistulas
Complex entero-enteric fistulas in CD
New directions
Diagnostic performance of MRE for prediction of mucosal healing (n=24)

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>p</th>
<th>Threshold</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clermont pre- treatment</td>
<td>0.835</td>
<td>0.016</td>
<td>24</td>
<td>100</td>
<td>69</td>
</tr>
<tr>
<td>Clermont post- treatment</td>
<td>0.912</td>
<td>0.003</td>
<td>9</td>
<td>71</td>
<td>100</td>
</tr>
<tr>
<td>Wall thickness post-treatment</td>
<td>0.938</td>
<td>0.001</td>
<td>6</td>
<td>67</td>
<td>100</td>
</tr>
<tr>
<td>MaRIA post-treatment</td>
<td>0.901</td>
<td>0.004</td>
<td>18</td>
<td>100</td>
<td>77</td>
</tr>
<tr>
<td>(\Delta)MaRIA</td>
<td>0.813</td>
<td>0.024</td>
<td>-25</td>
<td>71</td>
<td>77</td>
</tr>
</tbody>
</table>
20-yo man with ileal CD with mucosal healing post treatment

ΔMaRIA -86.8%
ΔClermont -75.8%
21-yo woman with ileal CD with lack of mucosal healing post treatment

ΔMaRIA 0.1%
ΔClermont -2.8%
DWI in CD

- DWI may have a role as a quantitative measure of inflammation and fibrosis in CD
- Inflamed bowel segments show restricted diffusion compared with normal bowel (Oto. Academic Radiology 2009, Oto. JMRI 2011)
- Significant negative association between ADC in bowel wall and MRI markers of disease activity (Ream. Pediatric radiology 2013)
- ADC lower in areas of transmural fibrosis compared to inflamed nonstenotic segments and normal bowel (Kovanlikaya. Abdominal imaging 2014)
Prediction of tissue composition of stenotic lesions in CD

- 35 CD patients with SB resection and MRI assessed
- Layered pattern at early post-contrast phase more frequent with marked inflammation
- ADC significantly lower and MaRIA score significantly higher in inflammation grade 2-3 vs. grade 1
- Significant correlations between inflammation grade and ADC/MaRIA score ($r = -0.396/0.376$, $P<0.02$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inflammation</th>
<th>Prominent muscle hypertrophy vs. prominent fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC</td>
<td>p</td>
</tr>
<tr>
<td>Length of involved bowel</td>
<td>0.7</td>
<td>0.036</td>
</tr>
<tr>
<td>Wall thickness on T2WI</td>
<td>0.64</td>
<td>0.142</td>
</tr>
<tr>
<td>Wall thickness on T1WI</td>
<td>0.725</td>
<td>0.018</td>
</tr>
<tr>
<td>ADC</td>
<td>0.728</td>
<td>0.029</td>
</tr>
<tr>
<td>MaRIA score</td>
<td>0.736</td>
<td>0.013</td>
</tr>
<tr>
<td>Clermont score</td>
<td>0.667</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Summary

• MRI is an excellent modality for SB imaging in IBD
• MR enterography should be used in young patients, preferably to CT
• MRI: best imaging modality for perianal fistulas
• Role of functional imaging (DWI, peristalsis) remains to be determined
Progression of digestive disease damage (Lémann score) and inflammatory activity

CDAI: Crohn's Disease Activity Index; CDEIS: Crohn’s Disease Endoscopic Index of Severity; CRP: C-Reactive Protein

Pariente B et al. Inflamm Bowel Dis 2011;17(6):1415-22
MRI report

• SB: inflammation, extent of lesions, stenosis, fistulas, SBO
• Colon: inflammation, distention
• Rectum-anus: proctitis, perianal fistulae
• Fluid collections, abscesses
• Nodes
• Upper abdomen: biliary system (PSC)
UC findings

- Diffuse colon wall thickening, wall edema
- Ahaustral colon
- No fistula or stenotic lesions
- No skip lesions, no abscess
- Superficial inflammation
- Patients may be imaged after total proctocolectomy (J pouch)
- Risk of CRC
UC

T2 fat sat | HASTE | DWI | Post-contrast T1
Quantitative imaging techniques

- DWI
- DCE-MRI
- Magnetization transfer ratio (potential marker of fibrosis)
- Quantification of bowel peristalsis
- FDG PET-MRI
Fibrostenotic vs. inflammatory lesions

- Direct relationship: Mural enhancement and response to medical therapy (Zappa, 2011)
- Fibrostenotic Subtype: fixed narrowing, wall thickening, surgical therapy
 - Prestenotic dilation (+/-, less likely to respond to medical therapy)
 - Reduced enhancement
 - Decreased T2 signal
 - Decreased FDG Avidity
- Inflammatory Subtype: Stricture responds to medical therapy
 - TTP – Enhancement
 - Increased T2 SI – stratified
 - Increased FDG Avidity (Catalano. Radiology 2016)
 - ? Low ADC