HCC: diagnosis and response to therapy

Bachir Taouli, MD, FISMRM, FSAR, FESGAR
Director of Body MRI and Cancer Imaging
Dpt. of Radiology, Translational and Molecular Imaging Institute
Icahn School of Medicine at Mount Sinai, New York
Disclosure

- Research grant: Bayer
HCC – worldwide incidence
Background

- Primary liver cancer: 2nd most common cause of cancer death worldwide
- Fastest growing cause of cancer death in USA (incidence tripled in last two decades), numbers likely to further increase due to obesity epidemic
- USA: 40,710 adults diagnosed with primary liver cancer, with estimated 28,920 deaths in 2017(cancer.net)
HCC

- Risk factors:
 - Cirrhosis of any cause: 80-90%
 - Most common cause of cirrhosis now: HCV
 - Most common cause of cirrhosis by 2030: NASH
 - Other: HBV, EtOH, obesity, diabetes, smoking, male sex

- Annual HCC incidence in patients with cirrhosis
 - 2-8% overall
 - Highest in patients with HCV or multiple risk factors
Role of imaging in HCC

Established:
- Screening
- Diagnosis
- Staging

Not established:
- Prediction of aggressiveness and grade
- Prognostication
- Prediction of gene expression
Imaging modalities

- MDCT widely performed (quadruple phase: pre, AP, PVP, LVP)
- MRI: less available, has advantages:
 - Post-treatment (subtraction)
 - Lack of radiation
 - Liver specific agents
- Need late arterial phase imaging for CT and MRI (bolus tracking/care bolus)
Liver MR Protocol with EC GBCA (all BH except DWI)

- Axial/coronal T2 HASTE
- Axial 2D or 3D T1 in- out-of-phase
- Fat/iron quantification
- Axial DWI (50,400, 800, c1600)
- Axial dynamic 3D GRE T1 pre- post-contrast (2 ART phases, PVP 1 min, EQU 3 min)-Bolus tracking-Autosub
Liver MR Protocol with Gd-EOB-DTPA (Eovist/Primovist)

- Coronal T2 HASTE
- Axial 2D or 3D T1 in- out-of-phase
- Fat/iron quantification
- Axial dynamic 3D GRE T1 pre- post-contrast (2 ART, PVP, EQU)
- Axial T2 HASTE (long TE)
- Axial DWI (50, 400, 800, c1600)
- Hepatobiliary phase 10-20 min
HCC detection: CT vs. EC-MRI

- MRI considered generally superior to CT for lesions 1-2 cm
- Sens. CT: 50%-80%, sens. EC-MRI: 52%-93% depending on size
- Rode (JCAT 2001): Sens. for HCC detection US 46.2%, CT 53.8%, MRI 76.9%
- Burrel (Hepatology 2003): lesion sensitivity MRI > CT (76% vs. 61%), MRI superior to CT for nodules 1-2 cm (84% vs. 47%)
- MRI: optimal technique for HCC staging

HCC detection: EC-MRI vs EOB-MRI

- Advantages of EOB-MRI: additional information, improved confidence, possibility of detecting early HCC, ? Use AP + HBP, use for HCC screening (AMRI)
- Limitations: cost, added table time, lower quality of AP (TSM)
- No clear advantage of EOB over ECCM demonstrated
- Min. Hepatology 2018: compared diagnostic performance of LR-5 using ECCM vs EOB. ECCM had higher sensitivity (77.9% vs. 66.3%) and accuracy (82.1% versus 72.6%) then EOB
Gd-EOB-DTPA for HCC detection (Ahn, Radiology 2010)

- 9/84 HCCs seen only on HBP
- Sensitivity increased, but not statistically significant
- Diagnostic accuracy higher with HBP

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>< 1 cm</th>
<th>1-2 cm</th>
<th>> 2 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic MRI</td>
<td>50.0</td>
<td>83.4</td>
<td>97.0</td>
</tr>
<tr>
<td>Dynamic MRI + HBP</td>
<td>66.7</td>
<td>88.5</td>
<td>97.7</td>
</tr>
</tbody>
</table>
Correlation with liver explant (10y experience ISMMS): per-patient detection

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>86.3%</td>
<td>97.7%</td>
<td>98.0%</td>
<td>84.9%</td>
<td>91.3%</td>
</tr>
<tr>
<td>EC GBCA-MRI</td>
<td>89.5%</td>
<td>97.7%</td>
<td>99.0%</td>
<td>90.6%</td>
<td>94.4%</td>
</tr>
<tr>
<td>EOB-MRI</td>
<td>95.2%</td>
<td>94.1%</td>
<td>98.8%</td>
<td>80.0%</td>
<td>95.0%</td>
</tr>
<tr>
<td>P (CT vs. EC GBCA-MRI)</td>
<td>0.43</td>
<td>0.393</td>
<td>0.52</td>
<td>0.15</td>
<td>0.187</td>
</tr>
<tr>
<td>P (CT vs. EOB-MRI)</td>
<td>0.002</td>
<td>0.236</td>
<td>0.551</td>
<td>0.391</td>
<td>0.079</td>
</tr>
<tr>
<td>P (EC GBCA-MRI vs. EOB-MRI)</td>
<td>0.047</td>
<td>0.09</td>
<td>0.826</td>
<td>0.046</td>
<td>0.749</td>
</tr>
</tbody>
</table>
Sensitivity stratified by size

<table>
<thead>
<tr>
<th></th>
<th>Size 1-2 cm</th>
<th>Size ≥ 2cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>34.4%</td>
<td>93.1%</td>
</tr>
<tr>
<td>EC GBCA-MRI</td>
<td>64.6%</td>
<td>91.5%</td>
</tr>
<tr>
<td>Full EOB-MRI</td>
<td>67.3%</td>
<td>87.7%</td>
</tr>
<tr>
<td>P (CT vs. EC GBCA-MRI)</td>
<td>0.012</td>
<td>0.529</td>
</tr>
<tr>
<td>P (CT vs. Full EOB-MRI)</td>
<td>0.003</td>
<td>0.987</td>
</tr>
<tr>
<td>P (EC GBCA-MRI vs. EOB-MRI)</td>
<td>0.249</td>
<td>0.528</td>
</tr>
</tbody>
</table>
Some LGDN, many HGDNs, many early HCCs, and most progressed HCCs have reduced OATP expression.

Intra-nodular blood supply

Only progressed HCCs have arterial hypervascularity.
HCC – Imaging characteristics

Radiological hallmarks

- Arterial hyperenhancement
- Venous washout
- Capsular enhancement

Arterial phase
Equilibrium phase
Venous phase
HCC – Imaging characteristics

Enhancement pattern depends on tumor size and differentiation (Yoon SH et al, AJR 2009)

<table>
<thead>
<tr>
<th>Size</th>
<th>% with classic enhancement pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td><10mm</td>
<td>52</td>
</tr>
<tr>
<td>10-19</td>
<td>70</td>
</tr>
<tr>
<td>20-29</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>% with classic enhancement pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD</td>
<td>53</td>
</tr>
<tr>
<td>MD</td>
<td>79</td>
</tr>
<tr>
<td>PD</td>
<td>60</td>
</tr>
</tbody>
</table>
HCC – Imaging characteristics

Mosaic pattern

Necrosis
HCC – Imaging characteristics

Infiltrative HCC with tumor thrombus
WD HCC assessed with ECCM and EOB-DTPA

Besa et al, Acta Radiologica Reports 2015
WD fat containing hypovascular HCC with Gd-EOB
HCC with macrovascular invasion
MD HCC with wash-in/wash-out on CE-MRI, hypointensity on HBP and restricted diffusion on b1000
LI-RADS® diagnostic categories = relative probabilities

- **LR-NC**: Not categorizable
- **LR-1**: Definitely benign
- **LR-2**: Probably benign
- **LR-3**: Intermediate prob. of malignancy
- **LR-M**: Probably or definitely malignant, not necessarily HCC
- **LR-4**: Probably HCC
- **LR-5**: Definitely HCC
- **LR-TIV**: Tumor in vein

Courtesy, Claude Sirlin, UCSD
LI-RADS® diagnostic table assigns LR-3, LR-4, and LR-5z

CT/MRI Diagnostic Table

<table>
<thead>
<tr>
<th>Arterial phase hyperenhancement (APHE)</th>
<th>No APHE</th>
<th>APHE (not rim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation size (mm)</td>
<td>< 20</td>
<td>≥ 20</td>
</tr>
<tr>
<td>Count additional major features:</td>
<td>None</td>
<td>LR-3</td>
</tr>
<tr>
<td></td>
<td>One</td>
<td>LR-3</td>
</tr>
<tr>
<td></td>
<td>≥ Two</td>
<td>LR-4</td>
</tr>
</tbody>
</table>

Observations in this cell are categorized LR-4, except:
- LR-5g, if ≥ 50% size increase in < 6 months (~ OPTN 5A-g)
- LR-5us, if “washout” and visibility at screening US (AASLD HCC criteria)

If unsure about the presence of any major feature: characterize that feature as absent
HCC Response to Therapy
Response of HCC to LRT

Yaghmai & Taouli, et al. AJR 2013
Response criteria in HCC

Lencioni R, Llovet JM. Semin Liver Dis 2010
EASL-EORTC clinical practice guidelines: management of HCC. J Hepatol 2012
Yaghmai & Taouli, et al. AJR 2013
RECIST vs. mRECIST
<table>
<thead>
<tr>
<th></th>
<th>EASL*</th>
<th>mRECIST**</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Disappearance of all known disease and no new lesions determined by two observations not less than 4 weeks apart</td>
<td>Disappearance of any intratumoral arterial enhancement in all target lesions</td>
</tr>
<tr>
<td>PR</td>
<td>At least 50% reduction in total tumor load of all measurable lesions (determined by two observations not less than 4 w apart)</td>
<td>At least 30% decrease in the sum of diameters of viable target lesions</td>
</tr>
<tr>
<td>SD</td>
<td>Any cases that do not qualify for either PR or PD</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>At least 25% increase in size of one or more measurable lesions or the appearance of new lesions</td>
<td>At least 20% increase in the sum of the diameters of viable target lesions</td>
</tr>
</tbody>
</table>

* Bidimensional, ** Unidimensional measurements
CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease
RECIST vs mRECIST

- mRECIST and EASL guidelines independently predicted overall survival in patients with HCC treated with TACE (Shim. Radiology 2012; Kim BK. Eur J Cancer 2012)

- Significant association between survival and EASL and mRECIST responses, no association between survival and RECIST 1.1 (Gillmore. J Hepatol. 2011)

- Limitation of mRECIST:
 - Difficult to measure diffusely necrotic lesions with intervening viable components
Image subtraction
HCC post TACE/RFA with CR

T1 pre T1 post-contrast Subtraction
61 patients with 97 HCCs who underwent liver Tx after LRT with or 90Y RE (n=5).

RECIST, EASL, mRECIST, % necrosis on subtraction, and DWI all significant predictors of CPN (AUCs 0.810-0.815), while RECIST and ADC were not. ADC had poor performance (AUC 0.622).

Image subtraction demonstrated the strongest correlation (r=0.71-0.72, p<0.0001) with pathologic degree of tumor necrosis.
Advanced HCCs treated with nivolumab (anti-PD1)
mpMRI in HCC treated with Y90 radioembolization

Hectors. ISMRM 2018

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>6w</th>
<th>Mean % change</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_a (ml/100g/min)</td>
<td>132±48</td>
<td>57±34</td>
<td>-53.2</td>
<td>0.002</td>
</tr>
<tr>
<td>F_t (ml/100g/min)</td>
<td>166±28</td>
<td>95±45</td>
<td>-42.5</td>
<td>0.010</td>
</tr>
<tr>
<td>ART (%)</td>
<td>79±19</td>
<td>57±17</td>
<td>-24.6</td>
<td>0.006</td>
</tr>
<tr>
<td>v_e (%)</td>
<td>69±19</td>
<td>34±29</td>
<td>-49.2</td>
<td>0.027</td>
</tr>
<tr>
<td>D^* (10^{-3} mm^2/s)</td>
<td>38.5±20.4</td>
<td>20.3±7.6</td>
<td>-41.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ADC (10^{-3} mm^2/s)</td>
<td>1.2±0.2</td>
<td>1.5±0.3</td>
<td>27.5</td>
<td>0.037</td>
</tr>
</tbody>
</table>
Summary

- Imaging: essential tool in patients with HCC
- Choice of CT vs. MRI depends on local expertise and availability
- HCC diagnosis still relies on washin/washout
- EOB-DTPA: added value needs more data
- Response to therapy: relies on mRECIST and subtraction
Gd-EOB-DTPA MRI: recurrent HCC
Cholangiocarcinoma

- 2nd most common primary cancer (10% of primary cancers)
- US incidence 1.67/100,000
- Arises from epithelium lining the small intrahepatic bile ducts
- Risk factors:
 - Chronic biliary diseases: PSC, intrahepatic lithiasis, liver fluke infections (C. sinensis), RPC, choledochal cysts
 - HCV, cirrhosis, alcohol, obesity, NAFLD
 - Most cases are sporadic
- Tumors form masses or spread along biliary system, mass-forming, sclerosing or polypoid, can have mucin production
- Important to differentiate from HCC in cirrhosis: contra-indication for Tx
ICC-MRI appearance

- T1 hypo, T2 hyperintense heterogeneous mass, ± central T2 hypointensity, ± capsular retraction ± peripheral biliary distention
- DWI: restricted diffusion, target sign
- EC GBCA: early rim enhancement followed by progressive centripetal heterogeneous enhancement ± peripheral wash-out
- EOB-DTPA: early peripheral enhancement, becomes hypo in LVP and HBP in most cases
- HBP: increased lesion conspicuity, better delineation of satellite nodules and intrahepatic mets

Maetani. AJR 2001; Chung. Radiographics 2009
Peporte, EJR 2013; Kang, Radiology 2012
ICC with EC GBCA
ICC in HCV cirrhosis (EOB-DTPA)
Case #1: Patient with cirrhosis
MRI in- and out-of-phase
AP and PVP extracellular GBCA: 3 HCCs
Case #2
Hx HCC resection high AFP, CT negative
Major pathologic features of HCC

- Aggressiveness: grade (WD/MD/PD or Edmondson-Steiner) and CK19 expression
- Microvascular invasion (thin vs thick walled vessels)

Courtesy, Isabel Fiel, Pathology ISMMS

Roayaie, Gastroenterology 2009
Role of imaging in HCC

Established
- Screening
- Diagnosis
- Staging

Not established
- Prediction of aggressiveness and grade
- Prognostication
- Prediction of gene expression
Example of LR-5 Definite HCC

54 yo man with cirrhosis

MRI Diagnostic Table

<table>
<thead>
<tr>
<th>Arterial phase hyperenhancement (APHE)</th>
<th>No APHE</th>
<th>APHE (not rim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation size (mm)</td>
<td>< 20</td>
<td>≥ 20</td>
</tr>
<tr>
<td>Count additional major features:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• “Washout” (not peripheral)</td>
<td>None</td>
<td>LR-3</td>
</tr>
<tr>
<td>• Enhancing “capsule”</td>
<td>One</td>
<td>LR-3</td>
</tr>
<tr>
<td>• Threshold growth</td>
<td>≥ Two</td>
<td>LR-3</td>
</tr>
</tbody>
</table>
Example of

Man with cirrhosis

- **Pre**
- **Arterial**
- **Portal Venous**
- **Delayed 3 Minutes**

Nonrim APHE

Nonperipheral WO

27 mm
Example of LR-5: Definite HCC

MRI Diagnostic Table

<table>
<thead>
<tr>
<th>Arterial phase hyperenhancement (APHE)</th>
<th>No APHE</th>
<th>APHE (not rim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation size (mm)</td>
<td>< 20</td>
<td>≥ 20</td>
</tr>
<tr>
<td></td>
<td>< 10</td>
<td>10-19</td>
</tr>
<tr>
<td>Count additional major features:</td>
<td>None</td>
<td>LR-3</td>
</tr>
<tr>
<td></td>
<td>One</td>
<td>LR-3</td>
</tr>
<tr>
<td></td>
<td>≥ Two</td>
<td>LR-4</td>
</tr>
</tbody>
</table>

- "Washout" (not peripheral)
- Enhancing "capsule"
- Threshold growth

Man with cirrhosis

27 mm
Major pathologic features of HCC

- Aggressiveness: grade (WD/MD/PD or Edmondson-Steiner) and CK19 expression
- Microvascular invasion (thin vs thick walled vessels)

Courtesy, Isabel Fiel, Pathology ISMMS

Roayaie, Gastroenterology 2009

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>MDCT</th>
<th>Dyn MRI</th>
<th>Dyn MRI + HBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>All lesions</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.87</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>0.62</td>
<td>0.87</td>
<td>0.87</td>
<td>0.9</td>
</tr>
<tr>
<td>>2 cm</td>
<td>0.93</td>
<td>0.93</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>0.46</td>
<td>0.9</td>
<td>0.87</td>
<td>0.93</td>
</tr>
<tr>
<td>1–2 cm</td>
<td>0.7</td>
<td>0.65</td>
<td>0.66</td>
<td>0.85</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>0.6</td>
<td>0.89</td>
<td>0.91</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Significantly higher diagnostic accuracy, sensitivity and NPV was achieved on dynamic + hepatobiliary phase MRI compared with US, MDCT and dynamic phase MRI alone.
Extracellular GBCA for HCC detection

Park. Hepatology 2012: 52 patients/72 HCCs with explant

<table>
<thead>
<tr>
<th></th>
<th>≤ 1 cm</th>
<th>1-2 cm</th>
<th>> 2 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWI</td>
<td>0.26</td>
<td>0.42</td>
<td>0.89</td>
</tr>
<tr>
<td>CE T1</td>
<td>0.32</td>
<td>0.74</td>
<td>0.96</td>
</tr>
<tr>
<td>p</td>
<td>0.44</td>
<td><0.002</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Correlation with liver explant (ISMMS): per-lesion detection

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>59.5%</td>
<td>97.0%</td>
<td>98.0%</td>
<td>70.3%</td>
</tr>
<tr>
<td>EC GBCA-MRI</td>
<td>78.5%</td>
<td>99.1%</td>
<td>99.4%</td>
<td>85.7%</td>
</tr>
<tr>
<td>EOB-MRI</td>
<td>76.8%</td>
<td>91.2%</td>
<td>98.9%</td>
<td>78.2%</td>
</tr>
<tr>
<td>P (CT vs. EC GBCA-MRI)</td>
<td>0.04</td>
<td>0.255</td>
<td>0.384</td>
<td>0.019</td>
</tr>
<tr>
<td>P (CT vs. EOB-MRI)</td>
<td>0.001</td>
<td>0.201</td>
<td>0.446</td>
<td>0.085</td>
</tr>
<tr>
<td>P (EC GBCA-MRI vs. EOB-MRI)</td>
<td>0.28</td>
<td>0.053</td>
<td>0.826</td>
<td>0.483</td>
</tr>
</tbody>
</table>