Liver Fibrosis and Cirrhosis

Bachir Taouli, MD, FISMRM, FSAR, FESGAR
Director of Body MRI and Cancer Imaging
Dpt. of Radiology, Translational and Molecular Imaging Institute
Icahn School of Medicine at Mount Sinai, New York
Disclosure

- Research grant: Bayer
Chronic liver disease

- Viral hepatitis:
 - HBV highly prevalent in Asia
 - HCV prevalent in US/Europe, soon eradicated with DAA
- NASH: will likely become the most prevalent cause of liver disease
- Other: Alcohol, AI, PSC, metabolic, etc...

Risks: fibrosis, cirrhosis, portal hypertension, end-stage liver disease, HCC
Role of liver biopsy

- Considered the reference standard by most hepatologists at initial diagnosis
- Roles:
 - Assess degree of fibrosis and necroinflammation
 - Determines prognosis
- Risks, poor patient acceptance, interpretation and sampling errors, difficult to repeat (Cadranel Hepatology 2000; Regev Am J Gastroenterol 2002; Bedossa Hepatology 2003)
- Liver biopsy cannot be used in population-based studies of NASH
METAVIR scoring system for fibrosis

Modified from Poynard
Morphologic Changes of Cirrhosis

- Irregular liver contour
- Nodular/reticular pattern of liver parenchyma
- Hypertrophy of left lobe and/or caudate lobe
- Atrophy of right lobe/sigt. 4
- Expanded gallbladder fossa sign
- Conventional CT/MRI not sensitive for detection of early cirrhosis and for diagnosis of fibrosis

Mitchell DG, et al. JMRI 1993
Ito K, et al. Radiology 1999
Ito K et al. JMRI 2003
Morphologic changes for diagnosing cirrhosis (n=143)

<table>
<thead>
<tr>
<th>Measure</th>
<th>AUC</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphologic changes</td>
<td>0.70/0.74</td>
<td><0.001</td>
</tr>
<tr>
<td>Child-Pugh score</td>
<td>0.71</td>
<td><0.001</td>
</tr>
<tr>
<td>MELD score</td>
<td>0.63</td>
<td>0.094</td>
</tr>
<tr>
<td>APRI</td>
<td>0.69</td>
<td>0.565</td>
</tr>
<tr>
<td>Platelet count</td>
<td>0.71</td>
<td><0.001</td>
</tr>
<tr>
<td>Spleen volume</td>
<td>0.63</td>
<td>0.083</td>
</tr>
<tr>
<td>Hepatic arterial enhancement</td>
<td>0.67</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Kihira. Abd Radiology 2016
Elastography

- Induce shear waves in tissue
- Estimate velocity of shear waves
- Calculate stiffness from the velocity

\[m = v^2 \rho \]

Shear Stiffness

Tissue Density

Wave Velocity
4 primary elastography techniques: TE, MRE, point shear wave elastography (pSWE), SWE

TE and pSWE: fixed sampling area size (fixed for TE)
2D-SWE: variable sampling
MRE offers (near) full organ coverage

Kennedy et al. Radiology 2018
Quantitative elastography methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Availability</th>
<th>Cost</th>
<th>Evidence</th>
<th>Liver sampling area</th>
<th>ROI placement</th>
<th>Reported parameter (Unit)</th>
<th>Main reasons for failure/unreliable results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>Widespread</td>
<td>Low</td>
<td>Excellent validation</td>
<td>Small</td>
<td>Restricted - no guidance</td>
<td>Young’s Modulus (kPa)</td>
<td>High BMI (M probe), ascites</td>
</tr>
<tr>
<td>ARFI</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate-good validation</td>
<td>Small (pSWE)</td>
<td>Medium (2D-SWE)</td>
<td>Flexible with US guidance</td>
<td>Young’s modulus (kPa) or wave speed (m/s)</td>
</tr>
<tr>
<td>MRE</td>
<td>Limited</td>
<td>High</td>
<td>Limited validation</td>
<td>Large</td>
<td>Large organ coverage</td>
<td>Complex shear modulus (kPa)</td>
<td>Liver iron deposition, large ascites, BMI, 3T (2D GRE)</td>
</tr>
</tbody>
</table>

Kennedy et al. Radiology 2018
Transient elastography (FibroScan®)

Courtesy, Laurent Castera, Hopital Beaujon, Clichy
Fibroscan examples
Diagnostic performance of TE

<table>
<thead>
<tr>
<th>Author</th>
<th>Region</th>
<th>Probe</th>
<th>Etiology</th>
<th>N</th>
<th>Success (%)</th>
<th>F2-F4</th>
<th>F3-F4</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziol 2005</td>
<td>EU</td>
<td>M</td>
<td>HCV</td>
<td>274</td>
<td>92</td>
<td>0.79</td>
<td>8.8</td>
<td>0.97</td>
</tr>
<tr>
<td>Castera 2005</td>
<td>EU</td>
<td>M</td>
<td>HCV</td>
<td>193</td>
<td>95</td>
<td>0.83</td>
<td>7.1</td>
<td>0.95</td>
</tr>
<tr>
<td>Lupson Platon 2013</td>
<td>EU</td>
<td>M</td>
<td>HCV</td>
<td>1202</td>
<td>89</td>
<td>0.89</td>
<td>7.4</td>
<td>0.97</td>
</tr>
<tr>
<td>Zarski 2012</td>
<td>EU</td>
<td>M</td>
<td>HCV</td>
<td>512</td>
<td>78</td>
<td>0.82</td>
<td>5.2</td>
<td>-</td>
</tr>
<tr>
<td>Yoneda 2015</td>
<td>US</td>
<td>XL</td>
<td>HCV</td>
<td>102</td>
<td>92</td>
<td>0.91</td>
<td>7.8</td>
<td>0.93</td>
</tr>
<tr>
<td>Marcellin 2009</td>
<td>EU</td>
<td>M</td>
<td>HBV</td>
<td>187</td>
<td>93</td>
<td>0.81</td>
<td>7.2</td>
<td>0.93</td>
</tr>
<tr>
<td>Castera 2011</td>
<td>EU</td>
<td>M</td>
<td>HBV</td>
<td>372</td>
<td>88</td>
<td>0.76</td>
<td>7.1</td>
<td>0.89</td>
</tr>
<tr>
<td>Leung 2013</td>
<td>Asia</td>
<td>M</td>
<td>HBV</td>
<td>454</td>
<td>90</td>
<td>0.78</td>
<td>6.9</td>
<td>0.92</td>
</tr>
<tr>
<td>Cardoso 2012</td>
<td>EU</td>
<td>M</td>
<td>HBV/HCV</td>
<td>613</td>
<td>92</td>
<td>0.87</td>
<td>7.2</td>
<td>0.95</td>
</tr>
<tr>
<td>Afdhal 2015</td>
<td>US</td>
<td>M</td>
<td>HBV</td>
<td>643</td>
<td>88</td>
<td>0.73</td>
<td>8.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Degos 2010</td>
<td>EU</td>
<td>M</td>
<td>HBV</td>
<td>1773</td>
<td>74</td>
<td>0.76</td>
<td>5.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Loong 2016</td>
<td>Asia</td>
<td>M</td>
<td>NAFLD</td>
<td>253</td>
<td>85</td>
<td>0.85</td>
<td>5.8</td>
<td>0.92</td>
</tr>
<tr>
<td>Cassinotto 2016</td>
<td>EU</td>
<td>M</td>
<td>NAFLD</td>
<td>291</td>
<td>77</td>
<td>0.82</td>
<td>6.2</td>
<td>0.87</td>
</tr>
</tbody>
</table>
ARFI (pSWE) US

MRE
Liver 7.0 kPa
Spleen 14.1 kPa

ARFI
Liver: 5.1 kPa
Spleen: 14.4 kPa
Limitations of US elastography methods

- TE failure assessed in a study of 13,369 examinations using the M probe (Castera et al. Hepatology 2010)
 - TE failed in 3.1% of cases, unreliable measurements were acquired in a further 15.8% of cases.
 - BMI identified as a significant contributory factor
 - Introduction of XL probe has improved the reliability of TE in patients with NAFLD.
 - Reliable measurements were obtained in 73% of patients with the XL probe compared to only 50% for the M probe (Myers. Hepatology 2012)
- TE not suited for spleen measurements
- Confounding factors: ALT flares, cholestasis, congestive heart failure, excessive alcohol intake and acute viral hepatitis
- Influence of steatosis: conflicting data
- pSWE and 2D-SWE:
 - Failure rate low for both methods (5% for 2D-SWE, and 1% for pSWE)
 - Interplatform variability may be an issue
Acoustic driver system for MRE

Acoustic waves at 60Hz

Elastogram

Courtesy, Richard Ehman; Mayo Clinic and Temel Yasar, ISMMS
MRE: Image processing pipeline

- Magnitude image
- Phase image
- Colorized wave image
- Greyscale elastogram
- Colorized elastogram
- Confidence map
MRE examples
Performance of MRE

<table>
<thead>
<tr>
<th>Author</th>
<th>Region</th>
<th>Sequence</th>
<th>Etiology</th>
<th>N</th>
<th>Success (%)</th>
<th>AUC</th>
<th>F2-F4 Cut-off (kPa)</th>
<th>AUC</th>
<th>F3-F4 Cut-off (kPa)</th>
<th>AUC</th>
<th>F4 Cut-off (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yin 2007</td>
<td>US</td>
<td>2D GRE</td>
<td>Mixed</td>
<td>85</td>
<td>98</td>
<td>0.92</td>
<td>4.89</td>
<td>0.92</td>
<td>6.47</td>
<td>0.92</td>
<td>6.47</td>
</tr>
<tr>
<td>Huwart 2008</td>
<td>EU</td>
<td>3D SE</td>
<td>Mixed</td>
<td>141</td>
<td>94</td>
<td>0.99</td>
<td>2.49</td>
<td>0.96</td>
<td>3.13</td>
<td>0.998</td>
<td>4.13</td>
</tr>
<tr>
<td>Asbach 2010</td>
<td>EU</td>
<td>2D EPI</td>
<td>Mixed</td>
<td>74</td>
<td>99</td>
<td>0.92</td>
<td>3.18</td>
<td>0.97</td>
<td>3.32</td>
<td>0.99</td>
<td>4.21</td>
</tr>
<tr>
<td>Wang 2011</td>
<td>US</td>
<td>2D GRE</td>
<td>Mixed</td>
<td>78</td>
<td>97</td>
<td>0.98</td>
<td>5.37</td>
<td>0.99</td>
<td>5.97</td>
<td>0.95</td>
<td>5.97</td>
</tr>
<tr>
<td>Dyvorne 2016</td>
<td>US</td>
<td>2D GRE</td>
<td>Mixed</td>
<td>42</td>
<td>90</td>
<td>0.78</td>
<td>3.9</td>
<td>0.94</td>
<td>4.07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chen 2016</td>
<td>US</td>
<td>2D GRE</td>
<td>Mixed</td>
<td>110</td>
<td>96</td>
<td>0.93</td>
<td>3.5</td>
<td>0.92</td>
<td>3.6</td>
<td>0.95</td>
<td>4.52</td>
</tr>
<tr>
<td>Ichikawa 2012</td>
<td>Asia</td>
<td>2D GRE</td>
<td>HCV</td>
<td>119</td>
<td>96</td>
<td>0.99</td>
<td>3.2</td>
<td>0.97</td>
<td>4</td>
<td>0.97</td>
<td>4.6</td>
</tr>
<tr>
<td>Shi 2014</td>
<td>Asia</td>
<td>2D GRE</td>
<td>HBV</td>
<td>132</td>
<td>91</td>
<td>0.99</td>
<td>4.07</td>
<td>1</td>
<td>5.45</td>
<td>0.998</td>
<td>6.87</td>
</tr>
<tr>
<td>Chang 2016</td>
<td>Asia</td>
<td>2D GRE</td>
<td>HBV</td>
<td>539</td>
<td>91</td>
<td>0.97</td>
<td>2.57</td>
<td>0.94</td>
<td>2.78</td>
<td>0.92</td>
<td>3.67</td>
</tr>
<tr>
<td>Shi 2016</td>
<td>Asia</td>
<td>3D SE-EPI</td>
<td>HBV</td>
<td>179</td>
<td>98</td>
<td>0.97</td>
<td>2.79</td>
<td>0.99</td>
<td>3.28</td>
<td>0.98</td>
<td>3.57</td>
</tr>
<tr>
<td>Loomba 2014</td>
<td>US</td>
<td>2D GRE</td>
<td>NAFLD</td>
<td>117</td>
<td>100</td>
<td>0.86</td>
<td>3.58</td>
<td>0.92</td>
<td>3.64</td>
<td>0.89</td>
<td>4.67</td>
</tr>
<tr>
<td>Cui 2016</td>
<td>US</td>
<td>2D GRE</td>
<td>NAFLD</td>
<td>126</td>
<td>99</td>
<td>0.89</td>
<td>3.62</td>
<td>0.93</td>
<td>3.62</td>
<td>0.88</td>
<td>4.15</td>
</tr>
<tr>
<td>Imajo 2016</td>
<td>Asia</td>
<td>2D GRE</td>
<td>NAFLD</td>
<td>142</td>
<td>100</td>
<td>0.89</td>
<td>3.4</td>
<td>0.89</td>
<td>4.8</td>
<td>0.97</td>
<td>6.7</td>
</tr>
</tbody>
</table>
Performance of MRE for detection of liver fibrosis

Yin 2007

Huwart 2008

Asbach 2010

Motosugi 2010

Wang 2011
56 y HIV/HCV male
Normal liver morphology, high LS
Stage 4 on Bx
Limitations of MRE

- Failure in patients with iron deposition using 2D GRE-MRE
- Confounded by inflammation, cholestatis
- Expensive
- Not easily available

61 yo male, HCV and iron deposition
T2* = 6 ms

Failed GRE-MRE EPI-MRE T2* map
Future directions

- Technical improvements: improve wave delivery, 2D EPI and 3D EPI sequence
- Viscoelastic properties other than shear stiffness
- Longitudinal monitoring of fibrosis / response to therapy
- Role in PH
- Risk of HCC
- HCC response
HCC response

Viable HCC

Stiffness 11.6 kPa in HCC and 4.0 kPa in liver

Necrotic HCC

Stiffness: 2.6 kPa in HCC and 7.4 kPa in liver
EPI-MRE is better than GRE-MRE

3D MRE acquisition

Non cirrhotic

Mean stiffness

Storage modulus

Cirrhotic

Loss modulus
MRE in portal hypertension

Liver 7.0 kPa
Spleen 14.1 kPa
Summary

- ARFI methods have shown similar diagnostic ability to TE with slightly higher reliability
- MRE: equivalent to slightly better diagnostic accuracy than TE and ARFI methods, while providing stiffness measurement over a larger area of the liver; however the method requires wider validation, and the higher cost and limited availability may limit adoption worldwide.
- In liver referral centers performing a large number of MRI exams, it is feasible to incorporate MRE into the standard imaging protocols to provide a fibrosis staging tool.
- New directions:
 - Faster and more reliable MRE sequences
 - Spleen MRE in portal hypertension

R1 maps (R1) maps. R1 maps acquired (A) pre and (B) one hour post EP-3533 in a rat fibrosis model.
Taouli Lab (Translational and Molecular Imaging Institute/ISMMS)

Octavia Bane, PhD; Sara Lewis, MD; Stefanie Hectors, PhD; Paul Kennedy, PhD; Daniela Said, MD; Naik Vietti Violi, MD; Daniel Stocker MD; Miriam Hulkower MD; Amy Law MD; Jeff Gnerre MD, Maxwell Segall, BS; Jonathan Rosenblatt, BA; Yair Bitton MBA

Funding:
- NIDDK Grant 1F32DK109591
- NCI Grant U01 CA172320
Elastography background

- To measure elasticity, stress is applied via shear wave propagation, delivered as a transient impulse or as a continuous dynamic excitation, and resulting tissue deformation is measured.
- Various methods of mechanical property quantification via transient and dynamic elastography have been developed using both US- and MR-based techniques.
- Elastography measures shear modulus (G, or the resistance to a shear stress) or Young’s modulus (E, often referred to as the elastic modulus), both in kPa.
- Under simplifying assumptions of incompressibility, E and G are approximately proportional: $E \approx 3G$.
- MRE: most reported parameter reported is the “shear stiffness”
Non invasive methods

US elastography

- Liver stiffness

MRE

- Liver stiffness

Blood tests

DWI

- ADC apparent diffusion
- D true diffusion
- PF perfusion fraction
- D* pseudo-diffusion

DCE-MRI

- Modeled parameters
 - Fa arterial flow
 - Fp portal venous flow
 - ART arterial fraction
 - DV distribution volume
 - MTT mean transit time

- Model free parameters
 - TTP time to peak
 - Cpeak peak [Gd]
 - AUC60 integral at 60s
Diagnostic performance of pSWE and SWE

<table>
<thead>
<tr>
<th>Author</th>
<th>Region</th>
<th>Method</th>
<th>Etiology</th>
<th>N</th>
<th>Success (%)</th>
<th>F2-F4</th>
<th>F3-F4</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporea 2011</td>
<td>EU</td>
<td>pSWE</td>
<td>HCV</td>
<td>274</td>
<td>96</td>
<td>0.89</td>
<td>1.21</td>
<td>0.91</td>
</tr>
<tr>
<td>Friedrich-Rust 2015</td>
<td>EU</td>
<td>pSWE</td>
<td>HCV</td>
<td>235</td>
<td>94</td>
<td>0.81</td>
<td>1.04</td>
<td>0.88</td>
</tr>
<tr>
<td>Ye 2012</td>
<td>Asia</td>
<td>pSWE</td>
<td>HBV</td>
<td>264</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>0.99</td>
</tr>
<tr>
<td>Cui 2016</td>
<td>US</td>
<td>pSWE</td>
<td>NAFLD</td>
<td>128</td>
<td>99</td>
<td>0.85</td>
<td>1.34</td>
<td>0.9</td>
</tr>
<tr>
<td>Ferraioli 2012</td>
<td>EU</td>
<td>SWE</td>
<td>HCV</td>
<td>121</td>
<td>98</td>
<td>0.92</td>
<td>7.1</td>
<td>0.98</td>
</tr>
<tr>
<td>Yoneda 2015</td>
<td>US</td>
<td>SWE</td>
<td>HCV</td>
<td>102</td>
<td>92</td>
<td>0.87</td>
<td>7.9</td>
<td>0.95</td>
</tr>
<tr>
<td>Leung 2013</td>
<td>Asia</td>
<td>SWE</td>
<td>HBV</td>
<td>454</td>
<td>98</td>
<td>0.88</td>
<td>7.1</td>
<td>0.93</td>
</tr>
<tr>
<td>Zhuang 2016</td>
<td>Asia</td>
<td>SWE</td>
<td>HBV</td>
<td>549</td>
<td>98</td>
<td>0.97</td>
<td>7.6</td>
<td>0.96</td>
</tr>
<tr>
<td>Cassinotto 2016</td>
<td>EU</td>
<td>SWE</td>
<td>NAFLD</td>
<td>291</td>
<td>80</td>
<td>0.86</td>
<td>6.3</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Cut-off values in kPa for 2D-SWE and m/s for pSWE
Mount Sinai experience with 2D GRE (Wagner. Radiology 2017)

- 781 MRE exams (in 691 patients) assessed for quality
- Technical failure rate of liver MRE higher at 3.0T compared to 1.5T using a 2D GRE sequence (failure rate: 15.3% vs. 3.5%)
- Univariate analysis, BMI, liver iron deposition, massive ascites, use of 3.0T, presence of cirrhosis, alcoholic liver disease were all significantly associated with failure
- Multivariable analysis, only BMI, liver iron deposition, massive ascites and use of 3.0T were significantly associated with MRE failure
Pitfall: All that’s stiff isn’t fibrosis

44yo M HCV with acute increase in LFT’s, abdominal pain

![Image of stiffness measurement]

Stiffness 10kPa

Biopsy: Mild-moderate fibrosis with moderate-severe necroinflammation

Courtesy of Scott Reeder, UW
Performance of MRE compared to TE and serum markers

Huwart et al, Gastroenterology 2008 (n=141)

- MRE: higher success rate than TE and better diagnostic accuracy than TE and APRI for staging liver fibrosis
- AUC MRE (0.994 for ≥ F2, 0.985 for ≥ F3, 0.998 for F4) larger than those of TE, APRI, and TE/APRI combined (0.837, 0.709, and 0.849 for ≥ F2, 0.906, 0.816, and 0.936 for ≥ F3; 0.930, 0.820, and 0.944 for F4)
Comparison of MRI/MRE to TE for grading steatosis and fibrosis in NAFLD

- Imajo et al, Gastro 2016
- n=142 with NAFLD
- Higher AUROC using MRE vs. TE for predicting F2-F4 fibrosis (0.91 vs. 0.82, p=0.001) and cirrhosis (0.97 vs. 0.92, p=
- Serum markers did not provide additional information over imaging markers
- TE failed in 15 patients (10% of the study cohort), while MRE measurements were successful in all included...
Tissue analysis

- Histologic methods
 - H&E, Trichrome, Sirius Red
 - Morphometry
- Immunostaining:
 - Alpha smooth muscle actin
 - Other HSC markers
- mRNA Quantification
 - Real time PCR with linear amplification from bx
Goals of imaging in chronic liver disease

- Diagnose cirrhosis, portal hypertension and HCC
- Quantify liver fat and iron
- Ultimate goals:
 - Diagnose inflammation and fibrosis
 - Reduce biopsy-related risks and costs
 - Facilitate earlier diagnosis
 - Improve monitoring of disease progression
 - Use in drug trials
 - Screening